

What is NASA's Mission?

- Safely fly the Space Shuttle until 2010
- Complete the International Space Station
- Develop a balanced program of science, exploration, and aeronautics
- Develop and fly the Orion Crew Exploration Vehicle (CEV)
- Return to the Moon no later than 2020
- Promote international and commercial participation in exploration

"The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect."

- NASA Administrator Michael Griffin October 24, 2006

WIIFM?

State of Alabama

- 150,000 aerospace industry workers in the state
 - \$6.16 billion annual payroll
 - Third highest average annual wage in the Nation behind VA and CA

Huntsville, Al

- 430 aerospace companies
- Home to Redstone Arsenal
 - RSA 8 major commands soon 11 General Officers
 - 30,000 people come on site at Redstone each day
 - More than \$35 billion in Federal procurements each year
- Home to Marshall Space Flight Center
 - \$2 billion annual budget
 - About 2500 Civil Service employees
 - About 5000 contractor employees
- Need all disciplines of engineers
- 2000 20,000 new jobs over the next five years (BRAC)
- Baby Boomers are retiring outnumber Gen X about 3 to 1

NASA Engineers

■NASA - 9563

■Marshall Space Flight Center – 1650

■Kennedy Space Center – 1264

■Goddard Space Flight Center – 1414

Disciplines

■Systems, Safety, Fire Protection, Materials, Architect, Civil, Environmental, Mechanical, Nuclear, Electrical, Computer, Electronics, Biomedical, Aerospace, Agricultural, Ceramic, Chemical

Probably 3 to 4 times this number of contractor engineers

Today's Journey

- What is NASA's mission?
- Why do we explore?
- What is our timeline?
- Why the Moon first?
- What will the vehicles look like?
- What progress have we made?
- Who will be doing the work?
- What are the benefits of space exploration?

Why Do We Explore?

Inspiration

 Inspire students to explore, learn, contribute to our nation's economic competitiveness, and build a better future

Innovation

 Provide opportunities to develop new technologies, new jobs, and new markets

Discovery

 Discover new information about ourselves, our world, and how to manage and protect it

MAJOR NASA PROGRAMS

- Space Shuttle
- International Space Station
- Earth and Space Sciences
- Constellation Program
 - Crew Launch Vehicle
 - Cargo Launch Vehicle
 - Crew Exploration Vehicle
 - Crew Service Module
 - Earth Departure Stage
 - Altair Lunar Lander
 - Mars Transfer Vehicle
 - Mars Descent/Ascent Vehicle
- Lunar Precursor Robotic Program
 - Lunar Reconnaissance Orbiter (LRO)
 - Lunar Crater Observation and Sensing Satellite (LCROSS)

SERVIR

- A system that helps scientists and authorities in southern Mexico and Central America identify sudden changes in environmental conditions, mapping details of deforestation, forest fires, hurricanes and toxic algae red tides
- Beginning applications in Africa
- Hubble Space Telescope
 - The visible/ultraviolet/near-infrared element of the Great Observatories astronomical program.
 - STS 125 is the final servicing mission to HST
 - Extend its life and increase capabilities
- Other Space Telescopes Spitzer, Chandra, James Webb (2013)

Rare Site – Two Shuttle on Pads October 20, 2008

International Space Station

NASA's Exploration Roadmap 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25... Mars Expedition Exploration and Science Lunar Robotics Missions Lunar Outpost Buildup ~2030 Research and Technology Development on ISS Commercial Orbital Transportation Services for ISS Space Shuttle Operations SSP Transition Ares I and Orion Development **Operations Capability Development** (EVA Systems, Ground Operations, Mission Operations) Orion and Ares I Production and Operation Ares I-X Test Flight April 2009 Altair Development Ares V & Earth Departure Stage Surface Systems Development APO AmbStandBrief 08/24/68 al Aeronautics and Space Administration

The Moon

Lunar missions allow us to:

- Gain exploration experience
 - Space no longer a short-term destination
 - Will test human support systems
 - Use Moon to prove ability to build and repair long-duration space assets
- Develop exploration technologies
 - Launch and exploration vehicles
 - In-situ resource utilization
 - Power and robotic systems
- Conduct fundamental science
 - Astronomy, physics, astrobiology, geology, exobiology

Next Step in Fulfilling Our Destiny as Explorers

There Are Many Places To Explore

Orientale Basin

Floor

16

Central Farside Highlands

We Can Land Anywhere on the Moon!

- Luna
- Surveyor

Procellarum

- Apollo
- Possible landing sites

South Pole

14

Near Side

South Pole -Aitken Basin Floor

Far Side

Journey to the Moon

Ares I Elements

Encapsulated Service Module (ESM) Panels

Orion CEV

Instrument Unit

- Primary Ares I control avionics system
- NASA Design / Boeing Production (\$0.8B) • NASA-led

Stack Integration

- 927k kg (2.0M lbm) gross liftoff weight
- 99 m (325 ft) in length

First Stage

- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- ATK Launch Systems (\$1.8B)

Upper Stage

- 137k kg (305k lbm) LOX/LH₂ stage
- 5.5 m (18 ft) diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for first stage flight
- Primary Ares I control avionics system
- NASA Design / Boeing Production (\$1.12B)

Upper Stage Engine

Interstage

- Saturn J–2 derived engine (J–2X)
- Expendable
- Pratt and Whitney Rocketdyne (\$1.2B)

Ares V Elements Altair Stack Integration Lunar Lander • 3.4 M kg (7.4M lb) gross liftoff weight • 110 m (360.5 ft) in length Solid Rocket Boosters • Two recoverable 5-segment PBAN-fueled boosters (derived Payload J-2X from current Ares I first stage) Fairing **Loiter Skirt Core Stage** Interstage Five Delta IV-derived RS-68 LOX/LH₂ engines (expendable) Earth Departure Stage (EDS) • 10 m (33-ft) diameter stage · Composite structures One Saturn-derived J–2X LOX/LH₂ · Aluminum-Lithium (Al-Li) tanks engine (expendable) • 10 m (33-ft) diameter stage · Aluminum-Lithium (Al-Li) tanks · Composite structures, instrument unit and interstage Primary Ares V avionics system

Orion Crew Exploration Vehicle

NASA

Launch Abort System Attitude Control Motor -(Eight Nozzles)

Canard Section — (Stowed Configuration)

Jettison Motor (Four Aft, Scarfed Nozzles)

Abort Motor (Four Exposed, Reverse Flow Nozzles)

Crew Module

- Service Module

Volume: 10.8 m³ (380 ft³)

- 80% larger than Apollo

LOCKHEED MARTIN

Diameter: 50 m (16.5 ft)

Encapsulated Service Module (ESM) Panels

- Spacecraft Adapter

- First full-scale rocket motor test for the Orion spacecraft
 - Test of a solid rocket that will be used to jettison the craft's launch abort system
 - Separates the craft's launch abort system from the Orion crew module during launch
 - The Orion launch abort system is a larger solid rocket motor system that will provide a safe escape for the crew in an emergency on the launch pad or during the climb to orbit
 - Completed March 2008

What progress have we made?

Programmatic Milestones Completed

- Ares 1 Systems Requirements Review
- Ares 1 Systems Definition Review
- Ares 1 Preliminary Design Review
- Contracts awarded for first stage, J-2X engine, upper stage, instrument unit, and Orion
- Ares 1-X test flight scheduled for Spring 2009

Technical Accomplishments

- •First stage parachute tests
- Developing first stage nozzles
- J-2X test stand construction at Stennis **Space Center**
- J-2x injector and power pack tests
- Fabricating Ares 1-X hardware
- Wind tunnel tests

Ares I–X Test Flight

Ares I–X

2.46 g

- Demonstrate and collect key data to inform the Ares I design:
 - Vehicle integration, assembly, and launch operations
 - Staging/separation
 - Roll and overall vehicle control
 - Aerodynamics and vehicle loads
 - First stage entry dynamics for recovery

15.8M N (3.5M lbf)

Mach 5.84

99 m (325 ft)

3.79 g

Performance Data:

14.1M N (3.13M lbf) First Stage Max. Thrust (vacuum): Max. Speed: Mach 4.7 Staging Altitude: 39,624 m (130,000 ft) 57,453 m (188,493 ft) Liftoff Weight: 927k kg (2.0M lbm) 834k kg (1.8M lbm) Length: 99.1 m (327 ft)

Max. Acceleration:

Concept - MARS Mission

Transfer to and from Mars in about 6 months – Mars surface stay about 18 months. Each human mission to Mars is comprised of three vehicle sets, two cargo vehicles, and one round-trip piloted vehicle. Planned 2.5-year mission

Down-to-Earth Benefits from the Space Economy

NASA powers innovation that creates new jobs, new markets, and new technologies

Personal Health

- Eye tracker for LASIK surgery
- Breast biopsy system
- 3D Imaging for surgery

Consumer Products

- Wireless light switch
- Remote appliance programmer
- Global Positioning Systems (GPS)

Environmental

- Water Filtration system
- Environmentally friendly chemical cleanup

Security

- Stair-climbing tactical robot
- Crime scene video enhancement

For more information see http://technology.jsc.nasa.gov

Every Dollar Invested in Space is Spent on Earth

NASA Explores for Answers that Power Our Future

NASA

NASA powers inspiration that encourages future generations to explore, learn, and build a better future.

- NASA relies on a well-educated U.S. workforce to carry out missions of scientific discovery that improve life on Earth.
- America's technological edge is diminishing.
 - Fewer engineering graduates from U.S. colleges and universities
 - More engineering and science graduates in other countries
- The global marketplace is increasingly competitive and technology-driven.
- Students need motivating goals and teachers with information to share.
- NASA continues to develop educational tools and experiences that inspire, educate, and motivate.

Summary

- Human beings will explore the Moon, Mars, and beyond to encourage inspiration, innovation, and discovery.
- We must build beyond our current capability to ferry astronauts and cargo to low Earth orbit.
- We are starting to design and build new vehicles, using extensive lessons learned to minimize cost, technical, and schedule risks.
- Exploring the Moon will help us reach Mars and beyond.
- Team is on board and making good progress – the Ares I-X test flight is on schedule for April 2009.

